

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: VIII

SUB.: MATHS

DATE: 16-05-2021

Squares and Square Roots

Square Number: Any natural number 'p' which can be represented as y², where y is a natural number, then 'p' is called a **Square Number**.

Example

 $4 = 2^2$, $9 = 3^2$, $16 = 4^2$

Where 2, 3, 4 are the natural numbers and 4, 9, 16 are the respective square numbers.

Such types of numbers are also known as **Perfect Squares**.

Some of the Square Numbers

12	=	1	16 ²	=	256
2 ²	=	4	17 ²	=	289
3 ²	=	9	18 ²	=	324
42	=	16	19 ²	=	361
5 ²	=	25	20 ²	=	400
6 ²	=	36	21 ²	=	441
72	=	49	22 ²	=	484
8 ²	=	64	23 ²	=	529
9 ²	=	81	24^{2}	=	576
10 ²	=	100	25 ²	=	625
11 ²	=	121	26 ²	=	676
12 ²	=	144	27 ²	=	729
13^{2}	=	169	28 ²	=	784
14^{2}	=	196	29 ²	=	841
15^{2}	=	225	30 ²	=	900

Properties of Square Numbers

- We can see that the square numbers are ending with **0**, **1**, **4**, **5**, **6 or 9** only.
- None of the square number is ending with 2, 3, 7 or 8.
- Any number having 1 or 9 in its one's place will always have a square ending with 1.

Number	Square Number
1	1
9	81
11	121
19	361
21	441

• Any number which has 4 or 6 in its unit's place, its square will always end with 6.

Number	Square Number	
4	16	
16	256	
24	576	
36	1296	
44	1936	

• Any number which has 0 in its unit's place, its square will always have an even number of zeros at the end.

Number	Square number
10	100
50	2500
100	10000
150	22500
400	160000

Some More Interesting Patterns

1. Numbers between Square Numbers

If we take two consecutive numbers n and n + 1, then there will be (2n) non-perfect square numbers between their square's numbers.

Example

Let's take n = 5 and $5^2 = 25$

n + 1 = 5 + 1 = 6 and $6^2 = 36$

2n = 2(5) = 10

There must be 10 numbers between 25 and 36.

The numbers are 26, 27, 28, 29, 30, 31, 32, 33, 34, 35.

2. Adding Odd Numbers

Sum of first n natural odd numbers is n².

$1 = 1 = 1^2$
$1+3 = 4 = 2^2$
$1 + 3 + 5 = 9 = 3^2$
$1 + 3 + 5 + 7 = 16 = 4^2$
$1 + 3 + 5 + 7 + 9 = 25 = 5^2$
$1 + 3 + 5 + 7 + \dots + n = n^2$

Any square number must be the sum of consecutive odd numbers starting from 1.

And if any natural number which is not a sum of successive odd natural numbers starting with 1, then it will not be a perfect square.

4. A Sum of Consecutive Natural Numbers

5. The Product of Two Consecutive Even or Odd Natural Numbers

If we have two consecutive odd or even numbers (a + 1) and (a - 1) then their product will be $(a^2 - 1)$ **Example**

Let take two consecutive odd numbers 21 and 23.

Revision Notes 21 × 23 = (20 - 1) × (20 + 1) = 20² - 1